设计模式的意义
设计模式(Design Pattern)是前辈们对代码开发经验的总结,是解决特定问题的一系列套路,它不是语法规定,而是一套 用来提高代码可复用性、可维护性、可读性、稳健性以及安全性 的解决方案。
23 种设计模式的本质是面向对象设计原则的实际运用,是对类的封装性、继承性和多态性,以及类的关联关系和组合关系的充分理解。
当然,软件设计模式只是一个引导,在实际的软件开发中,必须根据具体的需求来选择:
- 对于简单的程序,可能写一个简单的算法要比引入某种设计模式更加容易;
- 但是对于大型项目开发或者框架设计,用设计模式来组织代码显然更好。
设计模式的要素
- 模式的名称;
- 要解决的问题类型;
- 解决方案;
- 效率、安全及可移植性等优缺点评估。
面向对象的设计原则
开闭原则
软件实体应当对扩展开放,对修改封闭。(open for entension, but closed for modification.),使软件有一定的扩展性同时具备稳定性。
可以通过“抽象约束、封装变化”来实现开闭原则,即通过接口或者抽象类为软件实体定义一个相对稳定的抽象层,而将相同的可变因素封装在相同的具体实现类中。
里氏替换原则
继承必须确保超类所拥有的性质在子类中仍然成立(Inheritance should ensure that any property proved about supertype objects also holds for subtype objects)。
里氏替换原则的主要作用如下:
- 里氏替换原则是实现开闭原则的重要方式之一。
- 它克服了继承中重写父类造成的可复用性变差的缺点。
- 它是动作正确性的保证。即类的扩展不会给已有的系统引入新的错误,降低了代码出错的可能性。
- 加强程序的健壮性,同时变更时可以做到非常好的兼容性,提高程序的维护性、可扩展性,降低需求变更时引入的风险。
子类可以扩展父类的功能,但不能改变父类原有的功能。
依赖倒置原则
高层模块不应该依赖低层模块,两者都应该依赖其抽象;抽象不应该依赖细节,细节应该依赖抽象(High level modules shouldnot depend upon low level modules.Both should depend upon abstractions.Abstractions should not depend upon details. Details should depend upon abstractions)。其核心思想是:要面向接口编程,不要面向实现编程。
依赖倒置原则的主要作用如下:
- 依赖倒置原则可以降低类间的耦合性。
- 依赖倒置原则可以提高系统的稳定性。
- 依赖倒置原则可以减少并行开发引起的风险。
- 依赖倒置原则可以提高代码的可读性和可维护性。
public class DIPTest {
public static void main(String[] args) {
Customer wang = new Customer();
System.out.println("顾客购买以下商品:");
wang.shopping(new ShaoguanShop());
wang.shopping(new WuyuanShop());
}
}
//商店
interface Shop {
public String sell(); //卖
}
//韶关网店
class ShaoguanShop implements Shop {
public String sell() {
return "韶关土特产:香菇、木耳……";
}
}
//婺源网店
class WuyuanShop implements Shop {
public String sell() {
return "婺源土特产:绿茶、酒糟鱼……";
}
}
//顾客
class Customer {
public void shopping(Shop shop) {
//购物
System.out.println(shop.sell());
}
}
单一职责原则
单一职责原则规定一个类应该有且仅有一个引起它变化的原因,否则类应该被拆分(There should never be more than one reason for a class to change)。
单一职责原则的核心就是控制类的粒度大小、将对象解耦、提高其内聚性。如果遵循单一职责原则将有以下优点:
- 降低类的复杂度。一个类只负责一项职责,其逻辑肯定要比负责多项职责简单得多。
- 提高类的可读性。复杂性降低,自然其可读性会提高。
- 提高系统的可维护性。可读性提高,那自然更容易维护了。
- 变更引起的风险降低。变更是必然的,如果单一职责原则遵守得好,当修改一个功能时,可以显著降低对其他功能的影响。
接口隔离原则
尽量将臃肿庞大的接口拆分成更小的和更具体的接口,让接口中只包含客户感兴趣的方法。
接口隔离原则是为了约束接口、降低类对接口的依赖性,遵循接口隔离原则有以下 5 个优点:
- 将臃肿庞大的接口分解为多个粒度小的接口,可以预防外来变更的扩散,提高系统的灵活性和可维护性。
- 接口隔离提高了系统的内聚性,减少了对外交互,降低了系统的耦合性。
- 如果接口的粒度大小定义合理,能够保证系统的稳定性;但是,如果定义过小,则会造成接口数量过多,使设计复杂化;如果定义太大,灵活性降低,无法提供定制服务,给整体项目带来无法预料的风险。
- 使用多个专门的接口还能够体现对象的层次,因为可以通过接口的继承,实现对总接口的定义。
- 能减少项目工程中的代码冗余。过大的大接口里面通常放置许多不用的方法,当实现这个接口的时候,被迫设计冗余的代码。
在具体应用接口隔离原则时,应该根据以下几个规则来衡量。
- 接口尽量小,但是要有限度。一个接口只服务于一个子模块或业务逻辑。
- 为依赖接口的类定制服务。只提供调用者需要的方法,屏蔽不需要的方法。
- 了解环境,拒绝盲从。每个项目或产品都有选定的环境因素,环境不同,接口拆分的标准就不同深入了解业务逻辑。
- 提高内聚,减少对外交互。使接口用最少的方法去完成最多的事情。
迪米特原则
如果两个软件实体无须直接通信,那么就不应当发生直接的相互调用,可以通过第三方转发该调用。其目的是降低类之间的耦合度,提高模块的相对独立性。
过度使用迪米特法则会使系统产生大量的中介类,从而增加系统的复杂性,使模块之间的通信效率降低。所以,在釆用迪米特法则时需要反复权衡,确保高内聚和低耦合的同时,保证系统的结构清晰。
设计模式
单例模式
指一个类只有一个实例,且该类能自行创建这个实例的一种模式。
单例模式有 3 个特点:
- 单例类只有一个实例对象;
- 该单例对象必须由单例类自行创建;
- 单例类对外提供一个访问该单例的全局访问点。
单例模式可以保证在一个 JVM 中只存在单一实例。单例模式的应用场景主要有以下几个方面:
- 需要频繁创建的一些类,使用单例可以降低系统的内存压力,减少 GC。
- 某类只要求生成一个对象的时候,如一个班中的班长、每个人的身份证号等。
- 某些类创建实例时占用资源较多,或实例化耗时较长,且经常使用。
- 某类需要频繁实例化,而创建的对象又频繁被销毁的时候,如多线程的线程池、网络连接池等。
- 频繁访问数据库或文件的对象。
- 对于一些控制硬件级别的操作,或者从系统上来讲应当是单一控制逻辑的操作,如果有多个实例,则系统会完全乱套。
- 当对象需要被共享的场合。由于单例模式只允许创建一个对象,共享该对象可以节省内存,并加快对象访问速度。如 Web 中的配置对象、数据库的连接池等。
两种实现方式:
public class SingletonMode {
private static final SingletonMode instance = new SingletonMode();
private SingletonMode() {
}
public SingletonMode getInstance() {
return instance;
}
}
public class SingletonMode {
private static volatile SingletonMode singletonMode = null;
private SingletonMode() {
}
public SingletonMode getInstance() {
if (singletonMode == null) {
singletonMode = new SingletonMode();
}
return singletonMode;
}
}
简单工厂模式
定义一个创建产品对象的工厂接口,将产品对象的实际创建工作推迟到具体子工厂类当中。这满足创建型模式中所要求的“创建与使用相分离”的特点。
优点
- 工厂类包含必要的逻辑判断,可以决定在什么时候创建哪一个产品的实例。客户端可以免除直接创建产品对象的职责,很方便的创建出相应的产品。工厂和产品的职责区分明确;
- 客户端无需知道所创建具体产品的类名,只需知道参数即可;
- 也可以引入配置文件,在不修改客户端代码的情况下更换和添加新的具体产品类。
缺点
- 简单工厂模式的工厂类单一,负责所有产品的创建,职责过重,一旦异常,整个系统将受影响。且工厂类代码会非常臃肿,违背高聚合原则;
- 使用简单工厂模式会增加系统中类的个数(引入新的工厂类),增加系统的复杂度和理解难度;
- 系统扩展困难,一旦增加新产品不得不修改工厂逻辑,在产品类型较多时,可能造成逻辑过于复杂;
- 简单工厂模式使用了 static 工厂方法,造成工厂角色无法形成基于继承的等级结构。
public interface Product {
void showInfo();
}
public class ProductA implements Product {
@Override
public void showInfo() {
System.out.println("A product");
}
}
public class ProductB implements Product {
@Override
public void showInfo() {
System.out.println("B product");
}
}
public class ProductFactory {
public void makeProduct(Product product) {
product.showInfo();
}
}
public class ProductFactoryTest {
public static void main(String[] args) {
ProductFactory productFactory = new ProductFactory();
productFactory.makeProduct(new ProductA());
}
}
工厂模式
简单工厂模式违背了开闭原则,而“工厂方法模式”是对简单工厂模式的进一步抽象化,其好处是可以使系统在不修改原来代码的情况下引进新的产品,即满足开闭原则。
优点:
- 用户只需要知道具体工厂的名称就可得到所要的产品,无须知道产品的具体创建过程。
- 灵活性增强,对于新产品的创建,只需多写一个相应的工厂类。
- 典型的解耦框架。高层模块只需要知道产品的抽象类,无须关心其他实现类,满足迪米特法则、依赖倒置原则和里氏替换原则。
缺点:
- 类的个数容易过多,增加复杂度
- 增加了系统的抽象性和理解难度
- 抽象产品只能生产一种产品,此弊端可使用抽象工厂模式解决。
应用场景:
- 客户只知道创建产品的工厂名,而不知道具体的产品名。如 TCL 电视工厂、海信电视工厂等。
- 创建对象的任务由多个具体子工厂中的某一个完成,而抽象工厂只提供创建产品的接口。
- 客户不关心创建产品的细节,只关心产品的品牌
模式的结构
工厂方法模式的主要角色如下:
- 抽象工厂(Abstract Factory):提供了创建产品的接口,调用者通过它访问具体工厂的工厂方法 newProduct() 来创建产品。
- 具体工厂(ConcreteFactory):主要是实现抽象工厂中的抽象方法,完成具体产品的创建。
- 抽象产品(Product):定义了产品的规范,描述了产品的主要特性和功能。
- 具体产品(ConcreteProduct):实现了抽象产品角色所定义的接口,由具体工厂来创建,它同具体工厂之间一一对应。
抽象工厂模式
是一种为访问类提供一个创建一组相关或相互依赖对象的接口,且访问类无须指定所要产品的具体类就能得到同族的不同等级的产品的模式结构。
抽象工厂模式的主要角色如下。
- 抽象工厂(Abstract Factory):提供了创建产品的接口,它包含多个创建产品的方法 newProduct(),可以创建多个不同等级的产品。
- 具体工厂(Concrete Factory):主要是实现抽象工厂中的多个抽象方法,完成具体产品的创建。
- 抽象产品(Product):定义了产品的规范,描述了产品的主要特性和功能,抽象工厂模式有多个抽象产品。
- 具体产品(ConcreteProduct):实现了抽象产品角色所定义的接口,由具体工厂来创建,它同具体工厂之间是多对一的关系。
抽象工厂模式的结构同工厂方法模式的结构相似,不同的是其产品的种类不止一个,所以创建产品的方法也不止一个。
public interface ProductTypeA {
void show();
}
public interface ProductTypeB {
void show();
}
public class ProductA implements ProductTypeA {
@Override
public void show() {
System.out.println("product a");
}
}
public class ProductB implements ProductTypeB {
@Override
public void show() {
System.out.println("product b");
}
}
public interface ProductFacotry {
ProductTypeA productA(ProductTypeA productTypeA);
ProductTypeB productB(ProductTypeB productTypeB);
}
public class FacotryA implements ProductFacotry {
@Override
public ProductTypeA productA(ProductTypeA productTypeA) {
System.out.println("a product");
return null;
}
@Override
public ProductTypeB productB(ProductTypeB productTypeB) {
System.out.println("b product");
return null;
}
}
建造者模式
指将一个复杂对象的构造与它的表示分离,使同样的构建过程可以创建不同的表示,这样的设计模式被称为建造者模式。它是将一个复杂的对象分解为多个简单的对象,然后一步一步构建而成。它将变与不变相分离,即产品的组成部分是不变的,但每一部分是可以灵活选择的。
该模式的主要优点如下:
- 封装性好,构建和表示分离。
- 扩展性好,各个具体的建造者相互独立,有利于系统的解耦。
- 客户端不必知道产品内部组成的细节,建造者可以对创建过程逐步细化,而不对其它模块产生任何影响,便于控制细节风险。
其缺点如下:
- 产品的组成部分必须相同,这限制了其使用范围。
- 如果产品的内部变化复杂,如果产品内部发生变化,则建造者也要同步修改,后期维护成本较大。
建造者(Builder)模式的主要角色如下。
- 产品角色(Product):它是包含多个组成部件的复杂对象,由具体建造者来创建其各个零部件。
- 抽象建造者(Builder):它是一个包含创建产品各个子部件的抽象方法的接口,通常还包含一个返回复杂产品的方法 getResult()。
- 具体建造者(Concrete Builder):实现 Builder 接口,完成复杂产品的各个部件的具体创建方法。
- 指挥者(Director):它调用建造者对象中的部件构造与装配方法完成复杂对象的创建,在指挥者中不涉及具体产品的信息。
public class Product {
private String partA;
private String partB;
private String partC;
public void setPartA(String partA) {
this.partA = partA;
}
public void setPartB(String partB) {
this.partB = partB;
}
public void setPartC(String partC) {
this.partC = partC;
}
}
public abstract class Builder {
protected Product product = new Product();
public abstract void buildPartA();
public abstract void buildPartB();
public abstract void buildPartC();
public Product getResult() {
return product;
}
}
public class ConcreteBuilder extends Builder {
@Override
public void buildPartA() {
product.setPartA("A");
}
@Override
public void buildPartB() {
product.setPartB("B");
}
@Override
public void buildPartC() {
product.setPartC("C");
}
}
public class Director {
private Builder builder;
public Director(Builder builder) {
this.builder = builder;
}
public Product construct() {
builder.buildPartA();
builder.buildPartB();
builder.buildPartC();
return builder.getResult();
}
}
代理模式
由于某些原因需要给某对象提供一个代理以控制对该对象的访问。这时,访问对象不适合或者不能直接引用目标对象,代理对象作为访问对象和目标对象之间的中介。
代理模式的主要优点有:
- 代理模式在客户端与目标对象之间起到一个中介作用和保护目标对象的作用;
- 代理对象可以扩展目标对象的功能;
- 代理模式能将客户端与目标对象分离,在一定程度 降低了系统的耦合度,增加了程序的可扩展性。
其主要缺点是:
- 代理模式会造成系统设计中类的数量增加;
- 在客户端和目标对象之间增加一个代理对象,会造成请求处理速度变慢;
- 增加了系统的复杂度。
代理模式的主要角色如下。
- 抽象主题(Subject)类:通过接口或抽象类声明真实主题和代理对象实现的业务方法。
- 真实主题(Real Subject)类:实现了抽象主题中的具体业务,是代理对象所代表的真实对象,是最终要引用的对象。
- 代理(Proxy)类:提供了与真实主题相同的接口,其内部含有对真实主题的引用,它可以访问、控制或扩展真实主题的功能。
public interface Subject {
void request();
}
public class RealSubject implements Subject {
@Override
public void request() {
System.out.println("真实主题");
}
}
public class Proxy implements Subject {
private RealSubject realSubject;
@Override
public void request() {
if (realSubject == null) {
realSubject = new RealSubject();
}
preRequest();
realSubject.request();
postRequest();
}
public void preRequest() {
System.out.println("访问之前的处理");
}
public void postRequest() {
System.out.println("访问之后的处理");
}
}
public class ProxyTest {
public static void main(String[] args) {
Proxy proxy = new Proxy();
proxy.request();
}
}
适配器模式
将一个类的接口转换成客户希望的另外一个接口,使得原本由于接口不兼容而不能一起工作的那些类能一起工作。适配器模式分为类结构型模式和对象结构型模式两种,前者类之间的耦合度比后者高,且要求程序员了解现有组件库中的相关组件的内部结构,所以应用相对较少些。
该模式的主要优点如下:
- 客户端通过适配器可以透明地调用目标接口。
- 复用了现存的类,程序员不需要修改原有代码而重用现有的适配者类。
- 将目标类和适配者类解耦,解决了目标类和适配者类接口不一致的问题。
- 在很多业务场景中符合开闭原则。
其缺点是:
- 适配器编写过程需要结合业务场景全面考虑,可能会增加系统的复杂性。
- 增加代码阅读难度,降低代码可读性,过多使用适配器会使系统代码变得凌乱。
类适配器:
对象适配器:
装饰模式
指在不改变现有对象结构的情况下,动态地给该对象增加一些职责(即增加其额外功能)的模式,它属于对象结构型模式。
装饰(Decorator)模式的主要优点有:
- 装饰器是继承的有力补充,比继承灵活,在不改变原有对象的情况下,动态的给一个对象扩展功能,即插即用;
- 通过使用不用装饰类及这些装饰类的排列组合,可以实现不同效果;
- 装饰器模式完全遵守开闭原则;
其主要缺点是:装饰模式会增加许多子类,过度使用会增加程序得复杂性。
装饰模式主要包含以下角色。
- 抽象构件(Component)角色:定义一个抽象接口以规范准备接收附加责任的对象。
- 具体构件(ConcreteComponent)角色:实现抽象构件,通过装饰角色为其添加一些职责。
- 抽象装饰(Decorator)角色:继承抽象构件,并包含具体构件的实例,可以通过其子类扩展具体构件的功能。
- 具体装饰(ConcreteDecorator)角色:实现抽象装饰的相关方法,并给具体构件对象添加附加的责任。
测试代码:
public interface Component {
void operation();
}
public class ConcreteComponent implements Component {
public ConcreteComponent() {
System.out.println("创建具体构件角色");
}
@Override
public void operation() {
System.out.println("调用具体构件角色的方法operation()");
}
}
public class Decorator implements Component {
private Component component;
public Decorator(Component component) {
this.component = component;
}
@Override
public void operation() {
component.operation();
}
}
public class ConcreteDecorator extends Decorator {
public ConcreteDecorator(Component component) {
super(component);
}
public void operation() {
super.operation();
addFunction();
}
public void addFunction() {
System.out.println("添加功能");
}
}
public class Test {
public static void main(String[] args) {
Component component = new ConcreteComponent();
component.operation();
Component component1 = new ConcreteDecorator(component);
component1.operation();
}
}
策略模式
该模式定义了一系列算法,并将每个算法封装起来,使它们可以相互替换,且算法的变化不会影响使用算法的客户。策略模式属于对象行为模式,它通过对算法进行封装,把使用算法的责任和算法的实现分割开来,并委派给不同的对象对这些算法进行管理。
在现实生活中常常遇到实现某种目标存在多种策略可供选择的情况,例如,出行旅游可以乘坐飞机、乘坐火车、骑自行车或自己开私家车等,超市促销可以釆用打折、送商品、送积分等方法。
如果使用多重条件转移语句实现(即硬编码),不但使条件语句变得很复杂,而且增加、删除或更换算法要修改原代码,不易维护,违背开闭原则。如果采用策略模式就能很好解决该问题。
策略模式的主要优点如下:
- 多重条件语句不易维护,而使用策略模式可以避免使用多重条件语句。
- 策略模式提供了一系列的可供重用的算法族,恰当使用继承可以把算法族的公共代码转移到父类里面,从而避免重复的代码。
- 策略模式可以提供相同行为的不同实现,客户可以根据不同时间或空间要求选择不同的。
- 策略模式提供了对开闭原则的完美支持,可以在不修改原代码的情况下,灵活增加新算法。
- 策略模式把算法的使用放到环境类中,而算法的实现移到具体策略类中,实现了二者的分离。
其主要缺点如下。
- 客户端必须理解所有策略算法的区别,以便适时选择恰当的算法类。
- 策略模式造成很多的策略类。
策略模式的主要角色如下。
- 抽象策略(Strategy)类:定义了一个公共接口,各种不同的算法以不同的方式实现这个接口,环境角色使用这个接口调用不同的算法,一般使用接口或抽象类实现;
- 具体策略(Concrete Strategy)类:实现了抽象策略定义的接口,提供具体的算法实现。
- 环境(Context)类:持有一个策略类的引用,最终给客户端调用。
代码:
public interface Strategy {
void strategyMethod();
}
public class ConcreteStrategyA implements Strategy {
@Override
public void strategyMethod() {
System.out.println("具体策略A");
}
}
public class ConcreteStrategyB implements Strategy {
@Override
public void strategyMethod() {
System.out.println("具体策略B");
}
}
public class Context {
private Strategy strategy;
public void strategyMethod() {
strategy.strategyMethod();
}
public Strategy getStrategy() {
return strategy;
}
public void setStrategy(Strategy strategy) {
this.strategy = strategy;
}
}
public class Test {
public static void main(String[] args) {
Context context = new Context();
Strategy strategy = new ConcreteStrategyA();
context.setStrategy(strategy);
context.strategyMethod();
System.out.println("-----");
Strategy strategy1 = new ConcreteStrategyB();
context.setStrategy(strategy1);
context.strategyMethod();
}
}